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Volumetric tomography for combustion diagnostics is
experiencing significant progress during the past few years
due to its capability of imaging evolving turbulent flows.
Such capability facilitates the understanding of the mech-
anisms behind complicated combustion phenomena such as
lean blowout, acoustic oscillations, and formation of soot
particles. However, these techniques are not flawless and
suffer from high computational cost which prevents them
from applications where real-time reconstructions and on-
line monitoring are necessary. In this Letter, we propose a
new reconstruction method that can effectively reduce the
dimension of the inversion problem, which can then be
solved with a minimum computational effort. This method
and a classical iterative method were tested against each
other using a proof-of-concept experiment in which endo-
scopic computed tomography of chemiluminescence (CTC)
was implemented. The results show that the proposed
method can dramatically reduce the computational time
and, at the same time, maintain similar reconstruction ac-
curacy, as opposed to the classical approach. Although this
Letter was discussed under the context of CTC, it can be
applied universally to other modalities of volumetric
tomography such as volumetric laser-induced fluores-
cence. © 2018 Optical Society of America

OCIS codes: (280.1740) Combustion diagnostics; (110.6955)
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The kilohertz-rate volumetric tomography has attracted in-
creased research efforts for the past few years due to the recent
progress in both high-speed cameras and high-power high-
repetition-rate pulsed lasers [1–3]. For example, volumetric
laser-induced incandescence was used to reconstruct the distri-
bution of soot volume fraction of a turbulent diffusion jet flame
[4]; volumetric laser-induced fluorescence has been utilized to
image important intermediate flame species such as OH,
CH2O, and PAH in turbulent flames [2,3]; and volumetric
computed tomography of chemiluminescence (CTC) was

employed to track the ignition process of supersonic reactive
flows [1]. The development of these methods provides an
unprecedented opportunity to understand the complicated
turbulent combustion phenomena such as the acoustic oscilla-
tions, soot formation, and lean blowout. However, these meth-
ods suffer from a few limitations that prevent their extended
applications to practical scenarios. For example, there is typi-
cally limited optical access for engine measurements, and only a
small number of projections are available for tomographic
reconstruction. In addition, the experimental cost is usually un-
affordable as a considerable number of expensive high-speed
cameras are required. Both limitations can potentially be
overcome by using inexpensive fiber bundles which are flexible
and easy for deployment. Furthermore, a tomographic inver-
sion typically involves the solution of a large linear equation
system which has millions of variables [5]. The algebraic
reconstruction technique (ART) and its variants are the most
prevailing algorithms that have been adopted in the previous
demonstrations [5–10]. They are typically inefficient due to
their iterative nature [1,7,11,12]. The situation worsens for
a tomographic system that operates at a kilohertz rate since
thousands of frames needs to be processed within a second.
Thus, the computational cost associated is formidable, and the
reconstructions are usually performed offline [1–4,6,13–15].
This has become a major bottleneck that greatly limits volu-
metric tomography to applications where online monitoring
of the combustion process is required. Thus, this Letter aims
to propose an efficient inversion algorithm that can effectively
downsize the large-scale linear equation system into a small one.
Proper orthogonal decomposition (POD) is adopted here for
this purpose [16]. This method expresses the reconstruction
as a weighted summation of a few Karhumen–Loeve (KL) basis
functions, formulating the inversion process as the determina-
tion of weight coefficients for these basis functions [17]. Since
the number of basis functions is significantly smaller than the
number of voxels i.e., the unknowns, the dimension of the
inversion problem, as well as the computational cost, can be
dramatically reduced.

The remainder of this Letter is organized as follows: the
mathematical formulation of the endoscopic CTC and the
mathematical background of POD are briefly described first;
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the setup for a proof-of-concept experiment is then introduced,
after which the reconstructions from both the proposed
method and the ART algorithm are analyzed and compared;
and a summary is provided to conclude this Letter.

As mentioned, a variety of tomographic techniques have
been demonstrated previously for combustion diagnostics,
and the principles behind them are similar. In this Letter, we
cite the endoscopic CTC as an example to demonstrate the pro-
posed method since an expensive excitation laser is not required.
A typical endoscopic CTC system is illustrated in Fig. 1. As can
be seen, three coordinate systems are defined, the origins of
which are set on the reconstruction volume, the object lens
in front of the receiving end of a fiber bundle, and the sensor
chip on the camera, respectively. The geometric relationship
between the coordinate systems can be determined through a
calibration process, and the projection of any point within
the reconstruction volume to the camera can then be predicted
according to the coordinate transformation and the thin lens
formula [5,18]. By discretizing the tomographic field into a
number of I cubic voxels, a projection of the luminescent field
is essentially the summation of images of the voxels formed on
the camera sensor array, and the signal of the sth pixel on the tth
projection can be mathematically expressed as

ps;t �
XI

i�1

f i · wi�s; t�; (1)

where i and I are the voxel index and the total number of voxels,
respectively; f i is the luminescent intensity of the ith voxel; and
wi�s; t� is the spread function of the ith voxel with the param-
eters s and t indicating the sth pixel of the tth projection, and
can be calculated by tracing the projections of a large set of ran-
dom points that are uniformly distributed within the voxel.
Repeating Eq. (1) for every pixel of all projections, a linear equa-
tion system can be formulated as

p
⇀ � W · f

⇀
; (2)

whereW is the weight matrix, and is the assembly of the spread

functions of all voxels at each projection; p
⇀
and f

⇀
are the signal

intensity of all pixels and the chemiluminescent intensity of all
voxels arranged as column vectors, respectively. In practical ap-
plications, the field to be reconstructed is usually discretized into
millions of voxels, leading to a large-scale linear equation system,
the solution of which involves formidable computational cost.
As mentioned earlier, the ART algorithm and its variants are
iterative in nature, and it took around 30 min to solve the
inversion problem as reported in [19]. Furthermore, in the pre-
vious demonstrations, the measured data were processed frame
by frame without considering the common features among
them. However, due to the continuity of the flame in the

temporal domain, the connections between the consecutive
frames should be taken full advantage of and serve as a most
informative prior for tomographic reconstructions.

In this Letter, we propose a new reconstruction algorithm to
reduce the dimension of the problem so as to minimize the
computational cost by extracting the dominant features of
two training sets, one for the reconstructions and the other
one for the corresponding projections. This is achieved by per-
forming the POD [20] procedures twice (referred to as TPOD
hereafter), each time on one of the training sets. The POD
method is well-established and has been widely adopted in flow
analysis [21,22]. Mathematically, it is equivalent to singular
value decomposition [21] and can be described as

F � UΣV T � QV T ; (3)
where F is a matrix with each of its column representing a sam-
ple in the training set of either the reconstructions or the pro-
jections; Σ is a diagonal matrix, and its diagonal elements are the
singular values that are arranged in a descending order; and U
and V are orthonormal matrices, respectively. The column vec-
tors of V are essentially the basis functions for the training set.

Any field that needs to be reconstructed can then be
approximated as a linear combination of a series of basis func-
tions as

f
⇀
≈
XK

k�1

αkψ
⇀
k; (4)

where ψ
⇀
k is the kth basis function of the reconstruction training

set, αk is the corresponding weighted coefficient, and K is the
total number of the basis functions used for the approximation.
Similarly, the measured projections can be represented as a
weighted summation of a few dominant features as

p
⇀
≈
XQ

q�1

βqφ
⇀
q; (5)

where φ
⇀
q is the qth basis function of the projection training set;

βq is the corresponding weighted coefficient; and Q is the total
number of basis functions used.

It must be noted that the training sets should consist of a
good number of reconstructions and the corresponding projec-
tions. It is required that the training sets should include the
sample reconstructions that correspond to scenarios tht are
as diverse as possible. Defining Ψ � �ψ⇀1;ψ

⇀
2; � � � ;ψ

⇀
K �, and

Φ � �φ⇀1; φ
⇀
2; � � � ; φ

⇀
Q �, it can be noted that these two matrices

are unitary, and their inverse are the same as their transpose.
Therefore, Eq. (2) can be rewritten as

M α
⇀ � β

⇀
; (6)

where M � ΦTWΨ, α
⇀ � �α1; α2; � � � ; αK �T , β

⇀
�

�β1; β2; � � � ; βQ �T . Typically, Eq. (6) is a small-scale linear equa-
tion system which can be solved efficiently in a least square
sense [23] as

α
⇀ � M †β

⇀
; (7)

where M † is the Moore–Penrose generalized inverse of M .
The setup used for the proof-of-concept experiment is illus-

trated in Fig. 2. As can be seen, two customized fiber bundles
(Nanjing Chunhui Science and Technology Industrial Co.,
Ltd.), each with four input ends and one output end were
used to collect the flame projections from eight perspectives.

Fig. 1. Illustration of three coordinate systems defined for the math-
ematical formulation of endoscopic CTC.
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The input ends of the fiber bundles were arranged in nearly an
equiangular manner so as to maximize the differences between
the projections. The projections were then captured simultane-
ously by two synchronized cameras (Photron FASTCAMMini
AX100) which were operated at an exposure time of one milli-
second and a frame rate of 1000 fps. The dimensions of the
eight input ends and the two output ends are 8 mm × 8 mm
and 16 mm × 16 mm, respectively. Each input end contains
an array of ∼22; 000 multi-mode fibers. An AF Nikon lens
(50 mm focal length and f/1.8) was positioned in front of each
input end to collect the particular projection. The cameras are
equipped with an AIS Nikon Micro lens (55 mm focal length
and f/2.8) to relay the projections onto the complementary
metal oxide semiconductor chips.

An arbitrary sequence of 60 consecutive frames and the fol-
lowing 60 frames were then selected for the training and testing
purposes, respectively. Figure 3 shows an example set of eight
projections of a Bunsen flame. The tomographic volume was
set to be 6 mm × 6 mm × 6 mm in dimension and discretized
into 60 × 60 × 60 voxels. The number of effective pixels i.e., the
ones that covered the projections of the reconstruction volume,
were estimated to be ∼80; 000. Thus, this inverse problem is
highly underdetermined.

Due to the good performance of ART when a limited num-
ber of projections are available [24], it was adopted for the
tomographic reconstructions of the 60 training samples. A de-
tailed implementation of ART and parameter tuning can be
found in [5]. Before the reconstructions, the images without
the presence of the flame were taken and subtracted from
the projections so as to remove the background. A multiplica-
tive factor was then applied to the projections to ensure that
their integrated intensity is consistent [25].

The basis functions for both the reconstructions and projec-
tions can then be extracted from the training sets by performing
the TPOD procedure. The number of basis functions used for
reconstructions depend on how accurate the approximation is
required to be. According to [26], the mean square error in the
estimation directly correlates with the accumulated magnitude
of the eigenvalues that correspond to the used eigenvectors.
Thus, the selection criterion is suggested to be

XT

i�1

λi∕
XD

i�1

λi ≥ ξ; (8)

where λi is the ith eigenvalue; the parameters T and D are the
used and total number of the basis functions, respectively; and
ξ is the parameter that controls the mean square error of the
estimation [26] and is set to 95% in this Letter.

Figure 4 plots the 60 eigenvalues for the training set of re-
constructions, and the truncation parameter K was determined
to be 5. Similarly, the parameter Q was determined to be 8. The
selected basis functions were then used to calculate the matrix
M † and the vector β

⇀
for each case in the testing set. By com-

paring Eqs. (2) and (6), we can see that the dimension of the
inversion problem is reduced by ∼36; 000×.

The reconstructions for the testing set can then be obtained
by solving Eq. (7). Panels 5(a) and 5(c) of Fig. 5 are the slices
cut from the reconstructed 3D Bunsen flame for two randomly
selected consecutive cases. The red cube and yellow parallelo-
gram in each figure represent the reconstruction volume and

Fig. 2. Schematic of the endoscopic CTC system. Eight fiber bun-
dles were used to collect the projections from different perspectives.

Fig. 3. Example set of eight projections of a Bunsen flame taken by
the endoscopic CTC system.

Fig. 4. 60 eigenvalues for the training set of reconstructions.

Fig. 5. Panels (a) and (c) are the slices cut from the reconstructed
3D Bunsen flame for two randomly selected consecutive cases using
the TPOD method. Panels (b) and (d) are the counterparts obtained
for the ART algorithm.
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the cut slice, respectively. It is worth noting that the cut slice is
not parallel with any of the three axes in the world coordinate
system. The reconstructions from ART are also plotted in
panels 5(b) and 5(d) for comparison. It can be seen that the
reconstructions from both methods were in good agreement
and conform to the practical Bunsen flame structure. Further-
more, the flame height was estimated to be 3.5 mm and was
consistent with the value calculated from the size of the flame
on the images and the magnification of the imaging system.

To further validate the effectiveness of the proposed
method, the correlation coefficients between the reconstruc-
tions obtained from the TPOD method and the ART algo-
rithm were calculated as

r �
PI

i�1�xi − x��yi − y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i�1 �xi − x�2

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i�1 �yi − y�2

p ; (9)

where xi and yi represent the ith element of reconstructions;
and x and y are their mean values. The correlation coefficients
for all the testing cases were plotted as a red line with solid
circles in Fig. 6. The correlation coefficients between the simu-
lated projections according to Eq. (5) using the TPOD recon-
structions and the measured projections were also plotted as a
blue line with solid squares in the figure. As can be seen, all
these correlation coefficients were larger than 0.9, indicating
the reconstructions calculated via the TPOD method were
consistent with that obtained from the ART algorithm. This
conclusion also agrees with our observations from Fig. 5.

On the other hand, the processing time for a tomographic
reconstruction using the TPOD method was about 10 ms,
which was much less then that 1155 s using the ART algo-
rithm. All the cases were run at a desktop Intel(R) Xeon(R)
2.60 GHz CPU. The computational time can be further re-
duced by using a better CPU or employing parallel computing.

In summary, this Letter introduces a new tomographic
reconstruction algorithm based on dimension reduction via
POD for volumetric tomography as applied to combustion di-
agnostics. This method approximates the reconstruction as a
weighted summation of a few representative KL-basis functions
which are extracted from a training set. Such treatment greatly
reduces the number of variables to be determined compared
with the previous approach. The results obtained from the
proof-of-concept experiment suggest that the reconstructions
obtained are consistent with that from the ART algorithm.

However, the computational time the former required was
∼100; 000× less than the latter one. Such capacity makes
real-time 3D tomographic reconstruction more practical.
Although this Letter is discussed under the context of endo-
scopic CTC, the TPOD method is expected to be also valuable
to other tomographic modalities such as tomographic absorp-
tion spectroscopy [8,9,27,28], x-ray computed tomography
[29], and electrical impedance tomography [30].
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